This limits greatly the possible range of your factorial function.
这极大地阶函能范围。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
If this was 7 over 7 minus 2 factorial we would have 7 times 6.
如果这是 7 除 7 减 2 阶,我们将有 7 以 6。
Instead of factorial time, it takes linear time.
它不是阶时间, 而是线性时间。
So k factorial could be written as k times k minus 1 factorial.
所以 k 阶可以写成 k 以 k 减 1 阶。
So this could be rewritten as k times k minus 1 factorial.
所以这可以改写为 k k 减 1 阶。
And here we can make a little bit of a simplification because what's k divided by k factorial?
在这里我们可以稍微简化一下,因为 k 除以 k 的阶是多少?
So we could rewrite n factorial using the same trick up here.
所以我们可以在这里使用相同的技巧重写 n 阶。
That's all this factorial stuff here.
这就是所有这些阶的东西。
Times n minus k factorial times p to the k times 1 minus p to the n minus k.
以 n 减 k 阶 p 到 k 以 1 减 p 到 n 减 k。
So we'll take the factorial of 6 and we'll divide it by-- put a parentheses here.
所以我们将取 6 的阶,然后将它除以 -- 在这里放一个括号。
If this had 3 we would do 3 factorial, and I'll show you how that can happen.
如果它有 3,我们会做 3 个阶,我会告诉你这是如何发生的。
5 factorial is 5 times 4 times 3 times 2 times 1.
5阶是5以4以3以2以1。
And actually, it turns out that it's 2 factorial.
实际上,它是 2 的阶。
And as you'll see it's actually 2 factorial ways that it can happen.
正如您将看到的,它实际上可以通过两种阶方式发生。
Divided by 2 factorial times e to the minus 9 power.
除以 2 阶 e 的负 9 次方。
So times lambda to the k k over k factorial.
所以以 lambda 到 k k 阶。
So the n minus k will become b minus a factorial.
所以 n 减去 k 将变成 b 减去一个阶。
This would have an N factorial complexity - that is the number of nodes, times one less, times one less than that, and so on until 1.
这将具有 N 阶复杂度 - 即节点数,减一,再减一,依此类推直到 1。
So it's a factorial of how many we're choosing from, how many shots we're taking, and the Excel function for that is fact.
所以它是我们从中选择的数量、我们拍摄的照片数量的阶, 而 Excel 函数就是事实。
So that's why I got the 3 factorial.
所以这就是我得到 3 阶的原因。
So you end up with 1 times lambda k over k factorial.
所以你最终得到 lambda k 的 1 倍于 k 的阶。
关注我们的微信
下载手机客户端
划词翻译
详细解释